

Installation, operating and maintenance instructions

High performance solar collector TopSon F3-1 / F3-1Q / F3-Q

Roof top installation with AluPlus installation system

Single-row roof integration

Wolf GmbH, Postfach 1380, D-84048 Mainburg, Tel. +498751/74-0, Fax +498751/741600, Internet: www.wolf-heiztechnik.de

Contents

Contents

Standards and regulations
Safety instructions /
Protection against lightning
Snow and wind loads
Information on system hydraulics
Information regarding the system hydraulics
General preparations
Rooftop installation - General
Rooftop installation -
Interlocking tiles, plain tiles
Rooftop installation - Slate tiles
Rooftop installation - Corrugated roof
Roof integration - Interlocking tile
Roof integration - Interlocking tile.
Roof integration - Interlocking tile
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37 Filling the system / Safety datasheet / Initial start-up .38
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37 Filling the system / Safety datasheet / Initial start-up .38 Pressure testing / Venting the system .39
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37 Filling the system / Safety datasheet / Initial start-up .38 Pressure testing / Venting the system .39 System operating pressure. .40
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37 Filling the system / Safety datasheet / Initial start-up .38 Pressure testing / Venting the system .39 System operating pressure. .40 Commissioning check list .41
Roof integration - Interlocking tile. .18 Roof integration - Slate roof .24 Roof integration - Mönch-Nonne .31 Fitting the sensors .37 Filling the system / Safety datasheet / Initial start-up .38 Pressure testing / Venting the system .39 System operating pressure. .40 Commissioning check list .41 Operation / Inspection and service .42
Roof integration - Interlocking tile.18Roof integration - Slate roof.24Roof integration - Mönch-Nonne.31Fitting the sensors.37Filling the system / Safety datasheet / Initial start-up.38Pressure testing / Venting the system.39System operating pressure40Commissioning check list.41Operation / Inspection and service.42Inspection and service checklist.44
Roof integration - Interlocking tile.18Roof integration - Slate roof.24Roof integration - Mönch-Nonne.31Fitting the sensors.37Filling the system / Safety datasheet / Initial start-up.38Pressure testing / Venting the system.39System operating pressure40Commissioning check list.41Operation / Inspection and service.42Inspection and service checklist.44Faults - Causes - Remedies.48
Roof integration - Interlocking tile.18Roof integration - Slate roof.24Roof integration - Mönch-Nonne.31Fitting the sensors.37Filling the system / Safety datasheet / Initial start-up.38Pressure testing / Venting the system.39System operating pressure40Commissioning check list.41Operation / Inspection and service42Inspection and service checklist.44Faults - Causes - Remedies48Product fiche according to Regulation (EU) no. 811-812/2013.49
Roof integration - Interlocking tile18Roof integration - Slate roof.24Roof integration - Mönch-Nonne.31Fitting the sensors.37Filling the system / Safety datasheet / Initial start-up.38Pressure testing / Venting the system.39System operating pressure40Commissioning check list.41Operation / Inspection and service42Inspection and service checklist.44Faults - Causes - Remedies48Product fiche according to Regulation (EU) no. 811-812/2013.49Notes.51

Additional installation instructions are available for the following assembly systems:

- Alu-Flex-U installation frame for flat-roof and wall mounting
- Roof integration set 2-row, or 3-row for interlocking tiles

Note:

Specification

Collector	TopSon F3-1 TopSon F3-1Q TopSon F3-Q						
Casing	deep-drawn alumir	nium tray, natural finish, s	sea-water resistant				
Dimensions (L x W x H) / (external edge)	2099 x 1099 x 110 mm	1099 x 2099 x 110 mm	1099 x 2099 x 110 mm				
Gross surface area	2.3 m ²	2,3 m²	2.3 m ²				
Effective absorber area	2.0 m ²	2,0 m²	2.0 m ²				
Weight (dry)	40 kg	41 kg	41 kg				
Content	1.7 I	1,91	1.91				
Absorber	aluminium:copper	aluminium:copper	copper:copper				
	coating						
Cover	3.2 mm solar safety glass, hail-proof*						
Thermal insulation - rear	mineral wool						
Thermal insulation - lateral	mineral wool	Melamine resin foam	mineral wool				
Connections	flat-packing with union nut G ¾"						
Angle of inclination	15° to 90°	15° bis 75°	15° to 90°				
Optical efficiency*	80.4 %	77,0 %	79.4 %				
Heat loss coefficient a ₁ *	3.235 W/(m² K)	3,434 W/(m² K)	3.494 W/(m² K)				
Heat loss coefficient a_2^*	0.0117 W/(m ² K ²)	0,011 W/(m² K²)	0.015 W/(m² K²)				
Stagnation temp.* (permiss. operating temp.)	194 °C	190 °C	198 °C				
Irradiation angle correction factor $IAM_{50^{\circ}}^{*}$	94 %	94 %	95.4 %				
Thermal capacity C*	5.85 kJ/(m² K)	5,88 kJ/(m² K)	8.073 kJ/(m² K)				
Maximum operating pressure	10 bar	10 bar	10 bar				
Heat transfer medium	ANR	O ready-mixed (45 % by	vol.)				
Recommended flow rate	30 to	90 I / h x number of colle	ectors				
Solar Keymark registration no.	011-7S260F	011-7S2439F	011-7S592F				

* Values to EN 12975

Standards and regulations

Observe the locally applicable regulations, rules and guidelines during assembly, installation and operation.

The following standards and regulations must also be observed:

Installation on roofs

Observe all current Health & Safety regulations

Standards and regulations

- EN 1991 (+NA) Effects on load-bearing structures

In particular Parts 1-3: Snow loads

Parts 1-4: Wind loads

Connection of solar heating systems

EN 12976	Solar heating systems and their components Prefabricated systems (this includes generally applicable information regarding design and implementation)
EN 12977	Solar heating systems and their components Bespoke systems (this includes generally applicable information regarding design and implementation)
VDI 6002	Solar heating for domestic water

Electrical connection

- VDE 0100	Erection of power installations with rated voltages
	below 1000 V

- VDE 0105 Cables and lines in buildings
- EN 62305 Parts 1-4 Protection against lightning
- VDE 0100 Part 540 Selection and erection of electrical equipment - earthing arrangements, protective conductors, equipotential bonding conductors

The collectors are tested in accordance with the following standards:

- EN 12975-1 Quality control for solar heating collectors
- EN 12975-2 Performance test for solar heating collectors

Safety instructions

Safety instructions / Protection against lightning

The following symbols are used in conjunction with these important instructions concerning personal safety, as well as operational reliability.

"Safety instructions" are instructions that must be observed exactly, to prevent injury and material losses,

e.g. The potentially very high temperatures inside the collector result in a risk of scalding from the hot heat transfer medium.

"CAUTION" indicates technical instructions that you must observe to prevent material losses and equipment malfunctions.

Protection against lightning	The connection of the co system and the installati by an authorised contra compliance with the follo	ellector array to an existing or new lightning protection ion of equipotential bonding may only be carried out actor, under consideration of local conditions and in owing technical rules:
	EN 62305 Parts 1-4	Protection against lightning
	VDE 0100 Part 540	Selection and erection of electrical equipment - earthing arrangements, protective conductors, equipotential bonding conductors

Notes on installation positionAlignment and shading
Ideally, the collectors should be oriented between south-east and south-west
(optimum: south). Please refer to our technical advisers in case of an alternative
orientation. Trees, neighbouring structures, chimneys, etc. should throw as
little shade over the collectors as possible. Observe the different position of
the sun (summer/winter).

The distance between the upper end of the solar collector and the lower edge of the ridge should be at least 3 roof tiles, in order to reduce wind forces and to allow sufficient space for installation.

Snow and wind loads

The load on the collector array is a combination of wind and snow loads which are determined by the dimensions of the building, the roof shape and the location. A precise calculation of the assumed loads must be carried out for each specific installation, in line with EN 1990 (+NA) and EN 1991 (+NA) and under consideration of regional regulations.

F3-1 collectors may be used for pressure and suction loads of up to 2.4 kN/m^2 . By using the snow load extension set, the maximum permissible pressure load may be increased to 4 kN/m^2 .

F3-1Q / F3-Q collectors may be used for suction loads of up to 2.4 kN/m² and pressure loads of up to 4 kN/m².

For safety reasons, the cross battens, rafters and roof tiles under the roof hooks must not show signs of previous damage (cracking, drill holes, ageing), else they will not withstand the loads to which they are subjected. If in doubt, replace the battens and roof tiles in those sections.

We recommend the use of metal tiles below the roof hooks, particularly in areas of high snowfall.

To avoid peaks in wind load we strongly recommend 1 metre minimum clearance between the collector array and the roof edge (or ridge).

Additional loads caused by drifting snow or snow guards and by snow falling from higher roofs should also be taken into consideration.

In areas where snow loads are significant we recommend a roof-integrated installation.

Information regarding the system hydraulics

- The collectors can be operated with a high specific flow rate (so-called High-Flow). Advantages: The collector is well cooled = high collector efficiency level, low heat losses at the flow line. Disadvantages: High pressure drop = powerful pump, large pipe cross-sections.
- The collectors can be operated with a low specific flow rate (so-called Low-Flow). Here, the advantages and disadvantages are reversed compared to the High-Flow operation. An additional advantage, due to the higher flow temperature, is the effective operation of a stratification cylinder.

Collector number	Solar line length	Solar pipe Ø (mm)	Pump group	DHW cylinder	Expansic 2.5	on vessel bar
	(m)	()			F3-1	F3-Q
2	15	15 x 1	10	SEM-2-300	18	18
2	30	18 x 1	10	SEM-2-300	18	18
3	10	15 x 1	10	SEM-2-400	25	35
3	20	18 x 1	10	SEM-2-400	35	35
3	30	15 x 1	20	SEM-2-400	25	35
3	70	18 x 1	20	SEM-2-400	35	35
4	15	18 x 1	10	SEM-1-500	35	50
4	30	22 x 1	10	SEM-1-500	50	50
4	50	18 x 1	20	SEM-1-500	35	50
5	10	18 x 1	10	SEM-1-750	50	50
5	20	22 x 1	10	SEM-1-750	50	50
5	35	18 x 1	20	SEM-1-750	50	50
5	90	22 x 1	20	SEM-1-750	50	50
6	15	22 x 1	10	SEM-1-750	80	80
6	30	18 x 1	20	SEM-1-750	50	80
6	70	18 x 1	20	SEM-1-750	50	80
7	15	28 x 1.5	10	SEM-1-1000	80	80
7	15	18 x 1	20	SEM-1-1000	80	80
7	50	22 x 1	20	SEM-1-1000	80	80
8	50	22 x 1	20	SEM-1-1000	80	80
8	100	28 x 1.5	20	SEM-1-1000	80	105
9	20	22 x 1	20	SEM-1-1000	80	80
9	80	28 x 1.5	20	SEM-1-1000	80	105
10	10	22 x 1	20	SEM-1-1000	80	105
10	50	28 x 1.5	20	SEM-1-1000	105	105

Flow data: High-Flow (90 l/h x coll), ANRO 30 °C

Flow data: Low-Flow (50 l/h x coll), ANRO 30 °C

Collector number	Solar line length (m)	Solar pipe Ø (mm)	Pump group	DHW cylinder	Expansion vessel 2.5 bar		
	(11)				F3-1	F3-Q	
2	20	12 x 1	10	SEM-2-300	18	18	
2	50	15 x 1	10	SEM-2-300	18	18	
3	35	15 x 1	10	SEM-2-400	25	35	
3	80	18 x 1	10	SEM-2-400	35	35	
4	25	15 x 1	10	SEM-1-500	35	35	
4	50	18 x 1	10	SEM-2-400	35	50	
5	20	15 x 1	10	SEM-1-500	50	50	
5	45	18 x 1	10	SEM-1-750	50	50	
6	15	15 x 1	10	SEM-1-750	50	80	
6	30	15 x 1	20	SEM-1-750	50	80	
6	35	18 x 1	10	SEM-1-750	50	80	
7	30	18 x 1	10	SEM-1-1000	80	80	
7	30	15 x 1	20	SEM-1-1000	80	80	
7	60	18 x 1	20	SEM-1-1000	80	80	
8	25	18 x 1	10	SEM-1-1000	80	80	
8	25	15 x 1	20	SEM-1-1000	80	80	
8	50	18 x 1	20	SEM-1-1000	80	80	
9	20	18 x 1	10	SEM-1-1000	80	80	
9	50	22 x 1	10	SEM-1-1000	80	80	
9	50	18 x 1	20	SEM-1-1000	80	80	
10	15	18 x 1	10	SEM-1-1000	80	80	
10	40	18 x 1	10	SEM-1-1000	80	105	
10	40	22 x 1	10	SEM-1-1000	80	105	
					-		

All details are recommendations and may vary from system to system. The expansion vessel sizes stated are valid for a static head of up to 10 metres only.

Pressure drop, F3-1 with ANRO 30 °C

General preparations

Transport and storage

- For handling and storage of the collector pile only use the packing strips and pallets.
- Never move more than 16 collectors in a single pile and never store more than 24 collectors in a single pile.

- Never move collectors with the glass facing down.

- To prevent damage, never carry collectors by the collector connectors or put them down on the connectors.
 - Never place the collector back onto uneven surfaces.
 - Store collectors only in dry places that are free of dust.
 - Cover the glass side of the collectors until the collectors are commissioned.
 - We recommend the use of transport handles (available as accessories).

The collector must **not** be pulled onto the roof exclusively by the rivet nuts! Do not step underneath the collector during transport. (see picture)

In case of jerky movements the rivet nuts can tear off and the collector can fall.

Installation

CAUTION

The installation and commissioning must only be carried out by authorised contractors. This contractor will be responsible for the correct installation and the commissioning.

 \triangle

The collector connections, even those of dry collectors, can become very hot during the installation. Wear protective gloves as there is a risk of injury from burns.

Required tools

The following materials and tools are required for an easy and safe collector installation:

- 1 x hammer
- 1 x tape measure
- 1 x pencil / chalk
- 2 x screwdriver / spanner SW 13
- 1 x wood drill approx. 5 mm (only roof integration)
- 1 x angle grinder with stone cutting disc
- 2 x open-ended spanner SW 30
- 1 x adjustable pliers
- 1 x hole saw (where the roof is already planked in)

Roof outlets for the solar lines (e.g. ventilation tile; cut to size with an angle grinder)

Protective conduits (sensor lead, pipework)

- Anti-falling protection
- Crosshead bit

General preparations

Preparations prior to installation The following tasks should be carried out prior to the collectors being moved onto the roof.

Please note: Fit compensators only to the short connectors.

- For **single-sided pipework to the left** (see example diagram) the short connectors are on the right.
- For **single-sided pipework to the right**, rotate the collector through 180°. The short connectors are now to the left.
- For **alternating pipework**, ensure that all short connectors are facing in the same direction.

Prior to joining the connections, check whether the collector gaskets are inside each fitting.

When fitting the connection pieces, compensators and plugs, always **counter hold** the union nut on the collector tightly. Apply a maximum torque of 20 Nm.

Remove the sensor well from the control unit carton and insert it into the flow connector.

Respectively insert 2 M8 x 30 grub screws fully into the lower tray edge.

Layout example: 3 F3 / F3-1 collectors, on end, alternating pipework (max. 10 collectors)

Installation on end (portrait)

Standard dimensions for The data is provided without consideration to the installation location or the determining the width of the pipe connections. collector array

> Length of mounting rail Alu + for 1 collector mounted on end 1030 mm Length of mounting rail Alu + for 2 collectors mounted on end 2160 mm Length of mounting rail Alu + for 3 collectors mounted on end 3290 mm Length of mounting rail joiner: 100 mm Collector width: 1100 mm Distance between installed collectors: 31 mm

Number of F3-1 collectors 1 7 2 3 4 6 8 9 10 5 1.1 2.23 3.36 4.49 5.62 7.89 9.02 Collector array width [m] 6.75 10.15 11.28 3.29 4.42 Mounting rail length [m] 1.03 2.16 5.55 6.68 7.81 8.94 10.07 11.20

Installation across (landscape)

Length of mounting rail Alu + for 1 collector mounted across: 2030 mm Length of mounting rail joiner: 100 mm Collector width: 2100 mm Distance between installed collectors: 31 mm

Number of F3-1Q / F3-Q collectors	1	2	3	4	5	6	7	8	9	10
Collector array width [m]	2.1	4.23	6.36	8.49	10.62	12.75	14.89	17.02	19.15	21.28
Mounting rail length [m]	2.03	4.16	6.29	8.42	10.55	12.68	14.81	16.94	19.07	21.20

Fixing material

Top roof hooks with fixing bracket

Bottom roof hooks Mounting rail with fixing bracket

Mounting rail joint Screws, nuts, set (if required) grub screws, wood screws in a bag

Rafter compensation set with wood screws for rafter mounting (available as an accessory)

Distribute all roof hooks supplied evenly over the width of the collector array to spread the loads applied. For this, position the roof hooks as near to the rafters as possible.

Preparatory installation of roof hooks

Bottom roof hooks

Fitting roof hooks to rafters (refit)

Top roof hooks

Top roof hooks

Initially tighten the roof hooks only by hand.

Note:

Some tile shapes (e.g. flat tiles that are profiled at the top and bottom) must be cut out in the area of the roof hooks to enable the fitted roof hooks to lie correctly and to prevent the tile above from lifting up.

Recommendation:

We recommend the use of metal tiles below the roof hooks, particularly in areas of high snowfall.

Joining the mounting rails

The mounting rails can be extended by using mounting rail joiners.

One of the 3 screws of the mounting rail joiner set can also be used for securing to a roof hook. For this, the U-rail remains centrally aligned; the screw can be manoeuvred within the slot to the correct position above the hook.

Special features for interlocking or plain tile roofs

Roof hook installation on battens (example for 2 collectors)

- CAUTION Distribute all roof hooks supplied evenly over the width of the collector array to spread the loads applied. For this, position the roof hooks as near to the rafters as possible.
 - 1. Assemble the bottom roof hooks in acc. with the diagram and hook them into the batten.
 - 2. Assemble the top roof hooks in acc. with the diagram and hook them into the batten.

Create the distance between both rails of 2.06 m for collector installation on end or 1.06 m for collector installation across at the top roof hooks using the slot in accordance with the diagram and secure that position with M8 x 20 coach bolts.

- 3. Adjust the height of the fixing brackets and secure with M8 x 20 coach bolts, ensuring that the pressure is evenly distributed over the roof tiles.
- 4. Slip the M8 x 20 coach bolts in sufficient numbers into the mounting rails.
- 5. Fit the mounting rails with washer nuts onto the roof hooks.
- 6. Cover the roof hook area with tiles.

Fitting the roof hooks to the rafters

(Example for 2 collectors)

Special features for rooftop installation on slate roofs with slate hooks

Special features for corrugated/sheet steel roofs with double-ended screws

Collector mounting

- Are all gaskets in place?
- Maintain the necessary distance
- Align all threaded fittings
- Counter hold with a second open-ended spanner max. torque 20 Nm
- 1. Insert the collector with the grub screws in with the lower mounting rail according to the diagram and initially secure it with the M8 washer nut by hand.
- 2. Push the M8 x 20 combination screws through the top mounting rail and initially tighten by hand into the collector.
- 3. Fit additional collectors likewise.
- 4. Secure the fittings for the flow and return. Check gaskets.
- 5. Tighten all screws and nuts to secure the collector.

CAUTION

For safety reasons, the [German] roofing contractor's association specifies a covered substrate with bitumen sheeting or other suitable material below the collector area to prevent the ingress of moisture in case of leaks. This must terminate in the roof gutter.

Number of collectors		1	2	3	4	5	6	7	8	9	10
Width incl. visible edgir	ng panels [m]	1.23	2.36	3.49	4.62	5.75	6.88	8.01	9.14	10.27	11.40
Width incl. skirt [m]		1.57	2.74	3.87	5.00	6.03	7.26	8.39	9.52	10.65	11.78
Tiles to be removed pe	r row of tiles:										
	Skirt width 30 cm	6	10	14	18	22	25	29	33	37	39
	Skirt width 30 cm	8	12	18	24	29	35	41	46	52	58

Roof integration overview

Extension of the lower mounting rail

Installation of the lower mounting rail

 After fitting the extension, centre the mounting rail so that a gap of less than 12 cm is created on both sides between the collector array and the finished tiling. If this is not possible, use half tiles or cut tiles to size. Ensure that the gap dimension remains <12 cm to ensure the roof cover is fully rainproof.

2. Drill a Ø 5 mm hole and secure the mounting rail with the hexagon head cap wood screw 8 x 80 and the wooden spacers (batten thickness less 9 mm) to the rafters.

3. Affix the flashing tape in accordance with the diagram. For this, peel back the protective foil only in the area actually to be used for the mounting rail. The flashing tape must protrude approx. 30 cm on the left and right over the flashing tape bases. Secure several flashing tapes to each other with an overlap of at least 5 cm. (Do not as yet affix the flashing tape to the tiles as the collectors must still be secured to the mounting rail.)

Collector installation

Installation of the intermediate panels

Create a fold

- 1. Push in the intermediate panels as per diagram. If this should foul during the installation, correct the collector position. Then bend the tabs at the top of the intermediate panels to prevent them from sliding through.
- 2. Tighten all screws and nuts to secure the collector.
- 3. Fully peel back the protective foil from the flashing tape and affix the flashing tape to the tiles. Create an upstanding fold at the ends of the flashing tape bases on the left and right (see Fig.).

Installation of the skirts

1. Hook in the casing panels on the left and right in accordance with the diagram and secure them with clamps.

- 2. Push the top casing panels over the collector frame. As support on each rafter, a wooden spacer of batten height must be fitted below the casing panel. Secure the casing panel with clamps.
- 3. Push the protective edge profiles at the casing panel joint at the top over the return, see the diagram.
- 4. Affix the side and top triangular sealing strip to the casing panels.
- Position the tiles around the skirt; if necessary use half tiles or trim tiles to size.

CAUTION F

For safety reasons, the [German] roofing contractor's association specifies a covered substrate with bitumen sheeting or other suitable material below the collector area to prevent the ingress of moisture in case of leaks. This must terminate in the roof gutter.

Number of collectors	1	2	3	4	5	6	7	8	9	10
Width incl. visible edging panels [m]	1.23	2.36	3.49	4.62	5.75	6.88	8.01	9.14	10.27	11.40
Width with flashing pieces / lift plates [m]	1.43	2.56	3.69	4.82	5.95	7.08	8.21	9.34	10.47	11.60

- 1. Pre-drill with \emptyset 5 mm bit and secure the mounting rail to the rafters with the 8 x 80 hexagonal screws (provided).
- 2. Affix the flashing tape, taking care to remove the protective foil only in the area to be affixed to the mounting rail. The flashing tape must protrude to the left and right approx. 30 cm over the flashing tape bases. If several strips of flashing tape are used these must be joined with an overlap of at least 5 cm. (Do not yet affix the flashing tape to the roof tiles as the collectors have yet to be secured to the mounting rail.)

- 1. Insert the collector with the grub screws first into the lower mounting rail according to the diagram and initially secure it with the M8 nut with washer by hand.
- 2. Insert additional collectors likewise into the lower mounting rail.
- 3. Slide top mounting rail onto the upper edge of the collectors. Secure the mounting rail to the collectors with the M8 x 20 combination screws and washers, fasten hand-tight only for now.
- 4. Do not yet secure the upper mounting rail to the roof.
- 5. Secure the flow and return fittings. Check gaskets.
- 6. Check for leaks in accordance with the section "Leak testing".

Note: Install the solar lines before fitting the edging panels around the collector array. This will allow you to check the system for leaks.

- 1. Push in the intermediate panels as per diagram. If this should foul during the installation, correct the collector position. Then bend the tabs at the top of the intermediate panels to prevent them from sliding through.
- 2. Tighten all screws and nuts to secure the collector.
- 3. Fully peel back the protective foil from the flashing tape and affix the flashing tape to the tiles. Create an upstanding fold at the ends of the flashing tape bases on the left and right (see Fig.).

Mounting the flashing pieces / lift plates

- 1. Fit bottom lift plate to the fold in the flashing tape and trim with scissors if necessary. Ensure sufficient overlap (8-10 cm).
- 2. Align lift plates parallel to glass retaining strip of collector, at a distance of 65 mm.
- 3. Fix the lift plates at the top with 2 nails each.
- 4. Refit roof tiles on both sides, roughly to upper edge of collector.

- 1. Loosely place tiles and upper edging panel in their final position.
- 2. Fit top lift plate and cut to size. Ensure sufficient overlap (8-10 cm).
- 3. Firmly secure lift plate and tiles.
- 4. Depending on the size and overlap of the tiles a dimension X results, by which the collector must be raised in order to fit the upper edging panel.
 => Remove upper edging again and place a suitable spacer block under the top mounting rail.
- 5. Pre-drill through the rail + spacer block with \emptyset 5 mm bit and secure to the rafters with 8 x 80 hexagonal screws.
- 6. Affix upper edging panel to the collector and place in final position.

Mounting the edging panels Edge protector Д Metal retainers

- 1. Fit the top edging panels with 2 metal retainers each.
- 2. Cover the joints in the top edging panel with the edge protector.
- 3. Hook the side panels into the glass retaining strip of the collector using a rotating motion and slide them upwards until they are flush with the collector at the bottom.
- 4. Secure the side panels and lift plates using self-tapping screws.

Roof integration - Mönch-Nonne

CAUTION For safety reasons, the [German] roofing contractor's association specifies a covered substrate with bitumen sheeting or other suitable material below the collector area to prevent the ingress of moisture in case of leaks. This must terminate in the roof gutter.

Installation of the

intermediate panels

Flashing tape

- 1. Push in the intermediate panels as per diagram. If this should foul during the installation, correct the collector position. Then bend the tabs at the top of the intermediate panels to prevent them from sliding through.
- 2. Tighten all screws and nuts to secure the collector.

Fitting the flashing tape

Draw the tile shape using a template.

Cut flashing tape with a knife or scissors.

3062165_201508

Remove protective foil. Apply uniform pressure (e.g. with a hammer)

Affix the tape end to the support and the highest point.

Create a fold

Mark the width of 2 tiles along the entire length of the flashing tape and trim.

Affix the entire tape to the support, starting at the highest point.

Push down hard and cover at least 2 full tiles.

Installation of the skirts

- 1. Hook in the casing panels on the left and right in accordance with the diagram and secure them with clamps.
- 2. Push the top casing panels over the collector frame. As support on each rafter, a wooden spacer of batten height must be fitted below the casing panel. Secure the casing panel with clamps.
- 3. Push the protective edge profiles at the casing panel joint at the top over the return, see the diagram.
- 4. Affix the side and top triangular sealing strip to the casing panels.

Refit tiles

Fitting the sensors

In stagnation the collectors can reach temperatures of up to 200 °C. Therefore only to use the solar-specific flat gaskets supplied and ensure that the mounting and connecting components used are sufficiently temperature-resistant, particularly near the collectors.

Note also the information provided in chapter "Pipework".

Fitting the sensors

Filling the system

Filling and flushing the system

Filling the system / Safety datasheet / Initial start-up

For flushing and filling the solar heating system, we recommend the use of a fill & flush pump that runs for at least 30 to 60 minutes. This makes manual venting superfluous. Also consult the manufacturer's instructions for the solar pump assembly.

Do not fill the system or uncover the collectors in strong sunshine. There is a risk of burns. Only use undiluted ANRO to fill the system. Never add water or any other heat transfer medium. There is a risk of flocculation, and frost and corrosion protection can no longer be guaranteed. This may lead to a complete failure of the system.

Extract from the safety datasheet:

Trade name: Company: Emergency information:	ANRO heat transfer medium (ready-mixed, frost protection to -30 °C) Wolf GmbH, Postfach 1380, D-84048 Mainburg; Tel: +49 (0)8751/74-0; Fax: +49 (0)8751/741600 +49 (0)40 -209497-0 (weekdays 08:00 - 17:00 h)
Chemical properties:	1,2-Propylene glycol with corrosion inhibitors, 45.3 % by vol. mixed with 54.7 % by vol. potable water, dyed blue.
Particular safety information for personnel and the environment:	Not required
After contact with eyes:	Flush with clear running water for 15 minutes whilst holding the eyelids apart.
After contact with skin:	Wash with water and soap.
After ingestion:	Flush mouth and drink plenty of water.
Transport:	Not dangerous cargo in the sense of the transport regulations.
Water risk category:	WGK1; little risk to water.

The full safety data sheet is available from the "Download Centre" of the Wolf homepage.

Initial start-up

During commissioning the solar circuit is flushed, filled and pressurised. At this stage the collector must not transfer any heat - it should be covered, unless solar radiation levels are very low. Commissioning is generally carried out using only ANRO.

Filling and flushing

If a filler pump is used for filling the system, ensure that air can escape at the highest point/s. Metal manual air-vent valves are ideal for this purpose. In this case, however, a second person will be required to close the air-vent valves as soon as fluid begins to exit.

The solar filler and flushing pump from the Wolf accessories range has proven reliable in practice. With the pump it is no longer necessary to bleed the system at its highest point. The decisive factor is that the flow velocity in horizontal and falling sections of the solar circuit is greater than 0.4 m/s, this will ensure that the air bubbles are pulled along.

To prevent extensive foaming of the ANRO, we recommend that you start filling the pipework slowly with a reduced flow rate and then gradually increase the rate. Care should also be taken that when fluid flows back into the fill vessel, any turbulence is kept as low as possible. The fluid level above the return or flow connector should always be high enough so that the fluid surface in the vessel is calm.

Take care with objects with high static head. A negative pressure may form at high points owing to the falling water column beyond. This causes the boiling point of the fluid to decrease strongly and even at a low temperature steam may form, preventing the system from being filled correctly. Reducing the drain rate at the BDF valve can help prevent this situation. Reduce the drain flow rate until the required system operating pressure is constantly maintained at the pressure gauge.

Pressure testing / Venting the system

Once the entire solar circuit including the collectors is filled with heat transfer medium, the system must be thoroughly flushed (flow velocity > 0.4 m/s) to ensure that all foreign bodies (scale, swarf, etc.) and air pockets are removed. Experience suggests that the flushing should be maintained for at least 20 minutes in order to flush out all foreign bodies and air pockets.

Pressure test	The following procedure has proven reliable for the pressure test:
	 Fill the solar circuit (incl. collectors) with ANRO until the pressure reaches 90 % of the maximum system operating pressure (response pressure of the safety valve minus 10 %).
	- Maintain this pressure for at least 30 minutes. (Note: Glycol mixtures respond significantly slower to leaks than water.)
	- Now conduct the leak check for all screwed fittings and soldered or compression joints.
	- DEV and safety valve remain integrated during the pressure test.
	If the pressure test is successful, first bleed the system and then discharge ANRO until the pressure is reduced to the charge pressure of the system.
	If the test shows leaks, drain the ANRO to a level at which the remedial work can be carried out. Following this, repeat the pressure test.
Venting the system	During commissioning, ensure that the system is carefully vented. The ANRO previously filled into the system usually still contains micro bubbles that may collect at various points and form small air bubbles, for example in the pump, in the heat exchanger or upstream of the gravity brake. Care must be taken to remove these air bubbles.
	Signs of adequate ventilation of the system are a steady indication of the required flow rate and a steady pressure during pump operation, i.e. neither the flow meter nor the pressure gauge show fluctuations.
	After the first few weeks of operation, we recommend venting the system again at all venting points to release any air that may have collected.

System operating pressure An indication of the correct system operating pressure is an overpressure of 1.5 - 2.0 bar at the highest point of the system when cold. The system operating pressure at the solar module is therefore 1.5 - 2.0 bar plus 0.1 bar per metre of static head between the pressure gauge in the solar module and the highest point of the system.

Since some air continues to form after commissioning, the charge pressure should be a little higher (suggestion: +0.1 bar) than the system operating pressure.

The pre-charge pressure in the DEV for the required hydraulic seal is set at least 0.3 bar lower than the system operating pressure. Any difference in height between the pressure gauge and the DEV should be taken into account here. If for example the DEV is installed one metre lower than the pressure gauge, the pre-charge pressure in the DEV must be matched to the system operating pressure effective here (+0.1 bar), thus the pre-charge pressure should be only 0.2 bar lower than what the pressure gauge displays.

This matched pressure ratio between the charge pressure, system operating pressure and pre-charge pressure in the DEV is a requirement for the reliable long-term operation of a solar thermal system.

5	DEV pre-charge pressure	bar
4	Addition per metre height difference, pressure gauge - DEV	+0.1 bar / m
	Deduction for hydraulic seal	-0.3 bar
	System operating pressure	bar
	Charge pressure	bar
	Fill reserve for venting	+ 0.1 bar
	System operating pressure	bar
3	System operating pressure (pressure gauge)	bar
2	Addition per metre static head	+0.1 bar / m
1	Positive system pressure at highest point	1.5 - 2.0 bar

If the system operating pressure is set too low or if it drops a little due to leaks or ventilation, this may result in partial boiling of the solar fluid during system operation. This is particularly harmful to parts with high temperatures, where there is a pressure drop upstream of the collector array, or at the highest point of the solar circuit. A steam bubble at this point will reduce or completely halt the flow. In addition, the formation of steam due to stagnation occurs much more frequently where system operating pressure is low.

W

Commissioning check list

No.	Installation	
1	Collectors installed safe in case of storms	0
2	Solar line connected to the earthing system	0
3	Blow-off line permanently secured to the safety valve of the solar circuit	0
4	Drip container positioned below the blow-off line (solar circuit)	0
5	Blow-off line fitted to the safety valve and connected to the drain	0
6	Thermostatic mixing valve installed at the DHW outlet or cylinder temperature limited to 60 °C by the control unit	0 0
	Commissioning	
7	Expansion vessel inlet pressure (check prior to filling)bar	0
8	Solar circuit filled and flushed with heat transfer medium	0
9	Pump, cylinder indirect coil and collector vented (block gravity brake for venting purposes)	0
10	Air vent trap on the collector vented (if installed)	0
11	Solar circuit pressure tested, incl. leak check on all threaded, solder and compression fittings	0
12	All joints (glands on shut-off valves and fill & drain valves) leak tested	0
13	System pressure (cold)bar	0
14	Gravity brake function OK	0
16	DHW cylinder filled and vented on the DHW side	0
17	Shading of collectors removed	0
	Control systems	
18	Temperature sensors indicate realistic values	0
19	Solar circuit pump running - circulates heat transfer medium; poss. adj. (flow meter:l/min)	0
20	Solar circuit and cylinder are getting warm	0
21	Boiler boosting starts at:°C	0
22	Option: DHW circulation pump runtime from h to h	0
	Instruction: The system user has been instructed as follows:	
23	Basic function and operation of the solar control unit incl. DHW circulation pump	0
24	Instruction in the inspection options of the protective cylinder anode	0
25	Service interval	0
26	Handover of documents	0
27	Confirmation of the commissioning by the system user	0

W

Operation	- A vapour film can appear particularly in the early hours of the morning due to the temperature differential between the outside air and the collector. It will disappear as the collector heats up.
	- Where possible avoid switching off the power during solar irradiation. If vapour forms during very high solar yield, the system starts again automatically after it has cooled down.
	- The overheating protection function in the control unit does not need to be switched on for flat-plate collectors.
	 No special measures are required for times when no hot water is required, i.e. during holidays.
	 Ask your local contractor to inspect the system when the system pressure fluctuates severely or the ANRO heat transfer medium has been expelled from the safety valve.
Inspection and service	Have your solar thermal system regularly checked by a specialist contractor to ensure long-term operational reliability and to maintain efficiency. Depending on frequency and extent the checks are classed as inspection (annual) or service (as required, usually every 3-5 years). An inspection and service contract is recommended for all solar thermal systems.
	We also recommend an extra inspection after the first few weeks of operation to check the key functions of the system. This post-installation check or initial inspection should be included as a component of the overall service package for the system and can be itemised separately in the quote if required.
	The main system parameters are recorded in an inspection and service report to enable any problematic changes (e.g. system operating pressure or pH value) to be detected. For the initial installation, refer to the data provided in the system documentation (charge pressure, system operating pressure, controller and pump settings, etc.).
Scope of inspection	The annual inspection should extend to at least the following (this also applies to the initial inspection):
	- Vent all ventilation points in the solar circuit
	- Compare the system operating pressure with the set value (initial value if initial inspection)
	- Compare frost protection and pH value with their set values and the previous year's values (initial value if initial inspection)
	- Switch on pump, manually if necessary
	- If a flow meter is installed: Compare flow rate with set value
	- Check for fluctuations on the pressure gauge and flow meter (if applicable)
	- Check for noises in the pump (air)
	- Open and close gravity brake
	- Check movement of the thermostatic mixing valve
	- Check plausibility of controller (e.g. Tmax collector, Tmax cylinder, total yield, etc.)
	- Check plausibility as a function of solar radiation: flow and return temperatures on thermometers - values displayed by the controller
	- Document all settings and measured values

The DEV and the safety valve do not need to be checked if the system operating pressure is correct and the safety valve shows no sign of tripping (deposits, drops, increased contents of drip pan).

Scope of service	We further recommend servicing the system at longer intervals (roughly 3-5 years) as an extended inspection. Works to be carried out in addition to the regular inspections are as follows:
	- Visual inspection of all valves, joints and connections
	 Visual inspection of collectors including fixings
	- Visual inspection of insulation, solar circuit and sensor lines
	If the cylinder is included in the service contract, the cylinder should be serviced in accordance with the manufacturer's instructions.
	If the service or inspection reveal the need for additional work, this should be offered to the customer separately (e.g. collector cleaning, replacement of solar fluid or anode, etc.).
Return	At the end of their useful life the collectors may be returned to Wolf GmbH. These collectors must be clearly identified (e.g. as "scrap") and be delivered expenses paid during business hours.
	All collector materials are either correctly recycled or disposed of by Wolf GmbH.
Packaging	For optimum environmental responsibility, recycle the polystyrene packaging via suitable collection points. If required, dispose of the heat transfer medium via a recycling centre.

	Date:	Date:
Collector inspection		
- Visual collector inspection	0	0
- Visual inspection of the collector fixings	0	0
- Visual inspection for potential leaks in the roof	0	0
- Visual inspection of the thermal insulation on pipework	0	0
Solar heating circuit		
- Visual inspection for potential leaks in the solar circuit (joints)	0	0
- Colour check of the ANRO heat transfer medium	0	0
 pH value test of ANRO heat transfer medium only in case the medium has turned brown; poss. replacement 	рН	рН
- Frost protection level of the heat transfer medium checked.	°C	°C
- Safety valve tested	0	0
 Solar expansion vessel inlet pressure tested (for this, release pressure from expansion vessel). 	bar	bar
 In case of noisy pumps or system pressure fluctuations vent the system; for this, block the gravity brake 	О	О
- System pressure in a cold system state (see system operating pressure)	bar	bar
- Reactivate the gravity brake	0	0
Solar cylinder and DHW circuit		
- Protective anode inspection	0	0
 Check for scale build-up in the cylinder and on the thermostatic mixing valve; poss. carry out de-scaling 	0	0
 Check the anti-scalding protection (thermostatic mixing valve or via the maximum cylinder temperature limit) 	О	О
Control systems		
- Check control parameters and display values for plausibility	0	0
- Solar circuit pump running - circulates (poss. adj. and checking on the flow meter)	l/min	l/min
- Temperature of boiler boosting tested	°C	°C
- Option: DHW circulation pump runtime checked	0	0

	Date:	Date:
Collector inspection		
- Visual collector inspection	0	0
- Visual inspection of the collector fixings	0	0
- Visual inspection for potential leaks in the roof	0	0
- Visual inspection of the thermal insulation on pipework	0	0
Solar heating circuit		
- Visual inspection for potential leaks in the solar circuit (joints)	0	0
- Colour check of the ANRO heat transfer medium	0	0
 pH value test of ANRO heat transfer medium only in case the medium has turned brown; poss. replacement 	рН	рН
- Frost protection level of the heat transfer medium checked.	°C	°C
- Safety valve tested	0	0
 Solar expansion vessel inlet pressure tested (for this, release pressure from expansion vessel). 	bar	bar
 In case of noisy pumps or system pressure fluctuations vent the system; for this, block the gravity brake 	О	о
- System pressure in a cold system state (see system operating pressure)	bar	bar
- Reactivate the gravity brake	0	0
Solar cylinder and DHW circuit		
- Protective anode inspection	0	0
 Check for scale build-up in the cylinder and on the thermostatic mixing valve; poss. carry out de-scaling 	О	о
 Check the anti-scalding protection (thermostatic mixing valve or via the maximum cylinder temperature limit) 	0	О
Control systems		
- Check control parameters and display values for plausibility	0	0
- Solar circuit pump running - circulates (poss. adj. and checking on the flow meter)	l/min	l/min
- Temperature of boiler boosting tested	°C	°C
- Option: DHW circulation pump runtime checked	0	0

	Date:	Date:
Collector inspection		
- Visual collector inspection	0	0
- Visual inspection of the collector fixings	0	0
- Visual inspection for potential leaks in the roof	0	0
- Visual inspection of the thermal insulation on pipework	0	0
Solar heating circuit		
- Visual inspection for potential leaks in the solar circuit (joints)	0	0
- Colour check of the ANRO heat transfer medium	0	0
 pH value test of ANRO heat transfer medium only in case the medium has turned brown; poss. replacement 	рН	рН
- Frost protection level of the heat transfer medium checked.	°C	°C
- Safety valve tested	0	0
 Solar expansion vessel inlet pressure tested (for this, release pressure from expansion vessel) 	bar	bar
 In case of noisy pumps or system pressure fluctuations vent the system; for this, block the gravity brake 	0	0
- System pressure in a cold system state (see system operating pressure)	bar	bar
- Reactivate the gravity brake	0	0
Solar cylinder and DHW circuit		
- Protective anode inspection	0	0
 Check for scale build-up in the cylinder and on the thermostatic mixing valve; poss. carry out de-scaling 	0	О
 Check the anti-scalding protection (thermostatic mixing valve or via the maximum cylinder temperature limit) 	0	0
Control systems		
- Check control parameters and display values for plausibility	0	0
- Solar circuit pump running - circulates (poss. adj. and checking on the flow meter)	l/min	l/min
- Temperature of boiler boosting tested	°C	°C
- Option: DHW circulation pump runtime checked	0	0

	Date:	Date:
Collector inspection		
- Visual collector inspection	0	0
- Visual inspection of the collector fixings	0	0
- Visual inspection for potential leaks in the roof	0	0
- Visual inspection of the thermal insulation on pipework	0	0
Solar heating circuit		
- Visual inspection for potential leaks in the solar circuit (joints)	0	0
- Colour check of the ANRO heat transfer medium	0	0
 pH value test of ANRO heat transfer medium only in case the medium has turned brown; poss. replacement 	рН	рН
- Frost protection level of the heat transfer medium checked.	0°	°C
- Safety valve tested	0	0
 Solar expansion vessel inlet pressure tested (for this, release pressure from expansion vessel) 	bar	bar
 In case of noisy pumps or system pressure fluctuations vent the system; for this, block the gravity brake 	0	О
- System pressure in a cold system state (see system operating pressure)	bar	bar
- Reactivate the gravity brake	0	0
Solar cylinder and DHW circuit		
- Protective anode inspection	0	0
 Check for scale build-up in the cylinder and on the thermostatic mixing valve; poss. carry out de-scaling 	0	О
 Check the anti-scalding protection (thermostatic mixing valve or via the maximum cylinder temperature limit) 	0	0
Control systems		
- Check control parameters and display values for plausibility	0	0
- Solar circuit pump running - circulates (poss. adj. and checking on the flow meter)	l/min	l/min
- Temperature of boiler boosting tested	°C	°C
- Option: DHW circulation pump runtime checked	0	0

Notes to system user:

Please also refer to the instructions provided for the individual components connected. If it is not possible to rectify a fault, please inform your specialist contractor.

Fault	Possible cause	Remedy
Desired flow temperature not achieved	 Flow rate set too high or No flow Too little insolation or too little absorber area 	 Note the relationship between the flow rate and the temperature spread between flow and return; check and reduce the flow if necessary. Have a specialist contractor check the sizing of the system.
System pressure too low	 Leakage and loss of fluid Faulty DEV or incorrect pre-charge pressure Safety valve has responded 	Check pipework for leaks.Notify your specialist contractor.
Flow rate not correct	 Faulty pump Shut-off valve Flow rate is dependent on temperature (viscosity) Collector temperature too low/too high Faulty sensor 	 Observe installation instructions for pump and pump assembly. Check/open all shut-off valves. At low temperatures the flow rate can fall below the set value and at high temperatures may exceed it. This is not a fault. Observe the installation instructions for the control unit and check the collector temperature displayed. The pump is only activated if the solar yield is sufficiently high, and switches off when the maximum cylinder temperature is reached.
Safety valve has responded	Expansion vessel faulty or wrongly sized	Notify your specialist contractor.

Product fiche according to Regulation (EU) no. 811-812/2013

GB

IE

Product group: Solar

Product fiche according to Regulation (EU) no. 811/2013

Supplier's name or trade mark			Wolf GmbH	Wolf GmbH	Wolf GmbH	Wolf GmbH
Supplier's model identifier			CFK-1	CRK	F3-1	F3-1Q
Collector aperture area	A _{sol}	m²	2.12	1.99	1.99	2
Collector efficiency	η_{col}	%	59	61	66	62
Energy efficiency class of the solar hot water storage tank			dependent on the DHW stora- ge tank			
Standing loss of the solar hot water storage tank	S	w	dependent on the DHW stora- ge tank			
Storage volume of the solar hot water storage tank	V	L	dependent on the DHW stora- ge tank			
Annual non-solar heat contribution	Q _{nonsol}	kWh	dependent on the DHW stora- ge tank and load profile			
Pump power consumption	solpump	W	25	25	25	25
Standby power consumption	solstandby	W	5	5	5	5
Annual auxiliary electricity consumption	Q _{aux}	kWh	93.8	93.8	93.8	93.8

Product fiche according to Regulation (EU) no. 812/2013

Supplier's name or trade mark			Wolf GmbH	Wolf GmbH	Wolf GmbH	Wolf GmbH
Supplier's model identifier			CFK-1	CRK	F3-1	F3-1Q
Collector aperture area	A _{sol}	m²	2.12	1.99	1.99	2
Zero-loss efficiency	η _o		0.767	0.642	0.804	0.77
First-order coefficient	a,	W/m²K²	3.67	0.89	3.24	3.43
Second-order coefficient	a ₂	W/m²K²	0.018	0.001	0.012	0.011
Incidence angle modifier	IAM		0.95	0.88	0.94	0.94
Storage volume	V	L	dependent on the DHW stora- ge tank			
Load profile			dependent on the DHW stora- ge tank			
Annual non-solar heat contribution	Q _{nonsol}	kWh	dependent on the DHW stora- ge tank and load profile			
Pump power consumption	solpump	w	25	25	25	25
Standby power consumption	solstandby	W	5	5	5	5
Annual auxiliary electricity consumption	Q _{aux}	kWh	93.8	93.8	93.8	93.8

Product group: Solar

Product fiche according to Regulation (EU) no. 811/2013

Supplier's name or trade mark			Wolf GmbH
Supplier's model identifier			F3-Q
Collector aperture area	A _{sol}	m²	1.99
Collector efficiency	η _{col}	%	63
Energy efficiency class of the solar hot water storage tank			dependent on the DHW stora- ge tank
Standing loss of the solar hot water storage tank	S	w	dependent on the DHW stora- ge tank
Storage volume of the solar hot water storage tank	V	L	dependent on the DHW stora- ge tank
Annual non-solar heat contribution	Q _{nonsol}	kWh	dependent on the DHW stora- ge tank and load profile
Pump power consumption	solpump	w	25
Standby power consumption	solstandby	W	5
Annual auxiliary electricity consumption	Q_{aux}	kWh	93.8

Product fiche according to Regulation (EU) no. 812/2013

Supplier's name or trade mark			Wolf GmbH
Supplier's model identifier			F3-Q
Collector aperture area	A _{sol}	m²	1.99
Zero-loss efficiency	η _o		0.794
First-order coefficient	a,	W/m²K²	3.49
Second-order coefficient	a ₂	W/m²K²	0.015
Incidence angle modifier	IAM		0.95
Storage volume	V	L	dependent on the DHW stora- ge tank
Load profile			dependent on the DHW stora- ge tank
Annual non-solar heat contribution	Q _{nonsol}	kWh	dependent on the DHW stora- ge tank and load profile
Pump power consumption	solpump	w	25
Standby power consumption	solstandby	W	5
Annual auxiliary electricity consumption	Q _{aux}	kWh	93.8

Declaration of Conformity

in accordance with the Pressure Equipment Directive 97/23/EC in accordance with appendix VII

Product designation:	Solar collector category I Absorber Type: TopSon F3-1, TopSon F3-1Q, TopSon F3-Q
Applied conformity assessment procedure:	Panel A
Applied standards and specifications:	EN 12975-1 EN 12975-2

We, Wolf GmbH, Industriestraße 1, D-84048 Mainburg, Germany hereby declare that the above solar collectors comply with the appropriate regulations laid down in the Directive 97/23/EC.

This declaration loses its validity, if the product has been modified without our express permission. Observe the safety instructions in the documentation and the operating instructions.

Gerdewan Jacobs Director of Technology

pp//Klaus Grabmaier Product approval